1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
|
(*********************************************)
(* (Extended) Krivine Machine implementation *)
(* *)
(* Guillermo Ramos Gutiérrez (2015) *)
(*********************************************)
(*********)
(* Utils *)
(*********)
let print_with f x = print_endline (f x)
let concat_with sep f xs = String.concat sep (List.map f xs)
let split n xs =
let rec split_acc n xs ys = match (n, ys) with
| (0, _) | (_, []) -> (List.rev xs, ys)
| (n, y :: ys) -> split_acc (n-1) (y::xs) ys in
split_acc n [] xs
let find_idx a =
let rec find_acc n = function
| [] -> raise Not_found
| (x :: xs) -> if a == x then n else find_acc (n+1) xs in
find_acc 0
let rec repeat n x = if n == 0 then [] else x :: repeat (n-1) x
let fold_left1 f = function
| [] -> raise (Invalid_argument "empty string")
| (x::xs) -> List.fold_left f x xs
let dbg_lev = 1
let debug lev spaces s =
if dbg_lev >= lev
then print_endline (" -- " ^ String.concat "" (repeat spaces " ") ^ s)
(* Compile, decompile and reduce errors *)
exception CpErr of string
exception DcErr of string
exception RdErr of string
(************************************)
(* Calculus of Constructions terms *)
(************************************)
module CCLambda = struct
type symbol = string * int
let symbol : string -> symbol =
let id = ref 0 in
let gensym c : symbol =
let newid = !id in
id := !id + 1;
(c, newid)
in
gensym
type t = Var of symbol | App of t * t | Abs of symbol * t
| Constr of t constr | Case of t * (symbol constr * t) list
| Fix of symbol * symbol list * symbol * t
| Acc of t
and 'a constr = symbol * 'a list
let show_symbol (s, n) =
if dbg_lev > 2 then s ^ "/" ^ string_of_int n else s
let rec show m =
let show_branch ((x, vs), m) =
"(" ^ show_symbol x ^ "(" ^ concat_with "," show_symbol vs ^ ") → "
^ show m ^ ")" in
match m with
| Var x -> show_symbol x
| App (m1, m2) -> "(" ^ show m1 ^ " " ^ show m2 ^ ")"
| Abs (x, m) -> "(λ" ^ show_symbol x ^ "." ^ show m ^ ")"
| Constr (x, ms) -> show_symbol x ^ "(" ^ concat_with ", " show ms ^ ")"
| Case (m, bs) -> "(case " ^ show m ^ " of "
^ concat_with " " show_branch bs ^ ")"
| Fix (f, xs, c, m) ->
"fix_" ^ string_of_int (List.length xs)
^ "(λ" ^ concat_with ".λ" show_symbol (f::xs@[c])
^ ". " ^ show m ^ ")"
| Acc m -> "[" ^ show m ^ "]"
let print = print_with show
(* Auxiliar term-generating functions *)
let identity s =
let x = symbol s in
Abs (x, Var x)
let apps = fold_left1 (fun m n -> App (m, n))
let none = symbol "None"
let some = symbol "Some"
let cons = symbol "Cons"
let nil = symbol "Nil"
(* Peano arithmetic helpers *)
let z = symbol "z"
let s = symbol "s"
let rec peano_add n x =
if n == 0 then x else peano_add (n-1) (Constr (s, [x]))
let peano_of_int ?(base=Constr (z, [])) n = peano_add n base
(* Examples *)
(* (λx.x) (λy. ((λz.z) y) (λt.t) *)
let ex_m1 =
let y = symbol "y" in
App (identity "x",
Abs (y, App (App (identity "z",
Var y),
identity "t")))
(* (λf.λx. f (f x)) (λy.y) (λz.z) *)
let ex_id_id =
let f = symbol "f" in
let x = symbol "x" in
App (App (Abs (f, Abs (x, App (Var f, App (Var f, Var x)))),
identity "y"),
identity "z")
(* (λc. case c of (Cons(x, xs) → x) (Nil → Nil)) Cons(λx.x, Nil) *)
let ex_case_head =
let c = symbol "c" in
let x = symbol "x" in
let xs = symbol "xs" in
App (Abs (c, Case (Var c, [((cons, [x;xs]), Var x);
((nil, []), Constr (nil, []))])),
Constr (cons, [identity "m"; Constr (nil, [])]))
(* fix_0(λf.λc. case c of (s(x) → s(s(f x))) (z → z)) s(s(s(z))) *)
let ex_fixpt_dup =
let f = symbol "f" in
let c = symbol "c" in
let x = symbol "x" in
App (Fix (f, [], c, Case (Var c,
[((s, [x]), peano_add 2 (App (Var f, Var x)));
((z, []), peano_of_int 0)])),
peano_of_int 3)
end
module WeakRed : sig
type instrs
type mval
val show_instrs : instrs -> string
val show_mval : mval -> string
val compile : CCLambda.t -> instrs
val decompile : instrs -> CCLambda.t
val am_reduce : instrs -> mval
val extract : mval -> CCLambda.t
val reduce : CCLambda.t -> CCLambda.t
end = struct
open CCLambda
type dbi = symbol * int
type instr =
| ACCESS of dbi
| CLOSURE of instrs
| ACCLOSURE of symbol
| PUSHRETADDR of instrs
| APPLY of int
| GRAB of symbol
| RETURN
| MAKEBLOCK of symbol * int
| SWITCH of (symbol constr * instrs) list
| CLOSUREREC of (symbol * symbol list * symbol) * instrs
| GRABREC of symbol
and instrs = instr list
and accum =
| NoVar of symbol
| NoApp of accum * mval list
| NoCase of accum * instrs * env
| NoFix of accum * instrs * env
and mval =
| Accu of accum
| Cons of mval constr
| Clos of instrs * env
| Ret of instrs * env * int
and env = mval list
and stack = mval list
and state = {
st_c : instrs;
st_e : env;
st_s : stack;
st_n : int;
}
let show_dbi (x, i) =
string_of_int i ^
if dbg_lev > 2 then " (" ^ show_symbol x ^ ")" else ""
let rec show_instr = function
| ACCESS dbi -> "ACCESS(" ^ show_dbi dbi ^ ")"
| CLOSURE is -> "CLOSURE(" ^ show_instrs is ^ ")"
| ACCLOSURE x -> "ACCLOSURE([" ^ show_symbol x ^ "])"
| PUSHRETADDR is -> "PUSHRETADDR(" ^ show_instrs is ^ ")"
| APPLY i -> "APPLY(" ^ string_of_int i ^ ")"
| GRAB x -> "GRAB(" ^ show_symbol x ^ ")"
| RETURN -> "RETURN"
| MAKEBLOCK (x, n) -> "MAKEBLOCK(#" ^ show_symbol x ^ ", " ^
string_of_int n ^ ")"
| SWITCH bs -> "SWITCH(" ^ concat_with ", " show_branch bs ^ ")"
| CLOSUREREC (_, is) -> "CLOSUREREC(" ^ show_instrs is ^ ")"
| GRABREC x -> "GRABREC(" ^ show_symbol x ^ ")"
and show_branch (((c, _), _), is) = c ^ " → " ^ show_instrs is
and show_accum = function
| NoVar x -> "{NoVar: " ^ show_symbol x ^ "}"
| NoApp (k, mvs) -> "{NoApp: " ^ show_accum k ^ ", "
^ concat_with ", " show_mval mvs ^ "}"
| NoCase (k, is, e) -> "{NoCase: " ^ show_accum k ^ ", "
^ show_instrs is ^ ", " ^ show_env e ^ "}"
| NoFix (k, is, e) -> "{NoFix: " ^ show_accum k ^ ", "
^ show_instrs is ^ ", " ^ show_env e ^ "}"
and show_mval mval = match mval with
| Accu k -> show_accum k
| Cons ((s, _), mvs) ->
"{#" ^ s ^ if List.length mvs == 0 then "}"
else ": " ^ concat_with ", " show_mval mvs ^ "}"
| Clos (is, e) -> "{Tλ: (" ^ show_instrs is ^ "), "
^ (if List.length e > 0 && List.hd e == mval
then "{Tλ <fix>}::" ^ show_env (List.tl e)
else show_env e)
^ "}"
| Ret (is, e, n) -> "{<RET>: (" ^ show_instrs is ^ "), " ^ show_env e ^ ", "
^ string_of_int n ^ "}"
and show_env e = "[" ^ concat_with ", " show_mval e ^ "]"
and show_instrs is = concat_with "; " show_instr is
let show_stk stk = "| " ^ concat_with "\n | " show_mval stk
let show_st {st_c; st_e; st_s; st_n} =
"\n/---------------------------------------------------\n"
^ " C: " ^ show_instrs st_c ^ "\n"
^ " E: " ^ show_env st_e ^ "\n"
^ " S: " ^ show_stk st_s ^ "\n"
^ " N: " ^ string_of_int st_n ^ "\n"
^ "\\---------------------------------------------------"
let ret = [RETURN]
let compile (m : CCLambda.t) : instrs =
let open CCLambda in
let e = [] in
let rec compile' e (is : instrs) m =
debug 3 3 ("COMPILING: " ^ show m);
debug 3 3 (" IN ENV: " ^ concat_with ", " show_symbol e);
match m with
| Var x -> begin
try ACCESS(x, find_idx x e) :: is
with Not_found -> raise (CpErr ("Var " ^ fst x ^ " not found"))
end
| Abs (x, m) -> CLOSURE(GRAB x :: compile' (x :: e) ret m) :: is
| App (m1, m2) -> let cont = compile' e [APPLY(1)] m1 in
PUSHRETADDR(is) :: compile' e cont m2
| Constr (x, args) -> let f arg cont = compile' e cont arg in
let cont = [MAKEBLOCK (x, List.length args)] in
List.fold_right f (List.rev args) (cont @ is)
| Case (m, bs) ->
let compile_branch ((c, args), m) =
let dbi' = List.rev args @ e in
((c, args), compile' dbi' ret m) in
let bs' = List.map compile_branch bs in
PUSHRETADDR(is) :: compile' e [SWITCH(bs')] m
| Fix (f, xs, c, m) ->
let cont = compile' (c :: List.rev xs @ f :: e) ret m in
CLOSUREREC((f, xs, c),
List.map (fun x -> GRAB x) xs @ GRABREC c :: cont) :: is
| Acc (Var x) -> ACCLOSURE x :: is
| Acc _ -> raise (CpErr "Trying to compile non-var accumulator") in
compile' e ret m
let rec decompile' e s is =
debug 3 3 ("DECOMPILING: " ^ show_instrs is);
debug 3 3 (" IN ENV: " ^ concat_with ", " CCLambda.show e);
debug 3 3 (" IN STK: " ^ concat_with ", " CCLambda.show s);
match is with
| [] -> List.hd s
| [RETURN] -> List.hd s
| (ACCESS (_, i) :: is') -> decompile' e (List.nth e i :: s) is'
| (CLOSURE c_is :: is') -> decompile' e (decompile' e s c_is :: s) is'
| (PUSHRETADDR r_is :: is') -> decompile' e (decompile' e s is' :: s) r_is
| (APPLY i :: is) -> begin
match (i, s) with
| (1, a::b::_) -> App (a, b)
| (n, a::s') -> App (a, decompile' e s' [APPLY (n-1)])
| _ -> raise (DcErr "Unable to decompile APPLY")
end
| (GRAB x :: is') -> Abs (x, decompile' (Var x :: e) s is')
| (MAKEBLOCK (x, n) :: is') -> let (args, st') = split n s in
decompile' e (Constr (x, args) :: s) is'
| (SWITCH brs :: is') -> begin
let decompile_br ((c, parms), is) =
let parms_m = List.map (fun x -> Var x) parms in
((c, parms), decompile' (List.rev parms_m @ e) s is) in
match s with
| [] -> Case (Var (symbol "_"), List.map decompile_br brs)
| (a::s') -> Case (a, List.map decompile_br brs)
end
| (CLOSUREREC ((f, xs, c), is') :: is) ->
let m = decompile' (e) s is' in
decompile' e (Fix (f, xs, c, m) :: s) is
| (GRABREC x :: is') -> Abs (x, decompile' (Var x :: e) s is')
| _ -> raise (DcErr "Unable to decompile (unknown instruction)")
let decompile = decompile' [] []
let rec extract mv =
debug 3 3 ("EXTRACTING: " ^ show_mval mv);
match mv with
| Clos (is, _) -> decompile is
| Cons (x, mvs) -> Constr (x, List.map extract mvs)
| Accu k ->
let rec extract_accu = function
| (NoVar x) -> Acc (Var x)
| (NoApp (k, mvs)) ->
Acc (apps (extract_accu k :: List.map extract mvs))
| (NoCase (k, is, e)) -> begin
match decompile' (List.map extract e) [] is with
| Case (m, bs) ->
let accu = extract_accu k in
Acc (Case (accu, bs))
| _ -> raise (DcErr "Invalid decompilation of CASE accum.")
end
| (NoFix (k, is, e)) -> begin
match decompile' (List.map extract e) [] is with
| Fix (f, xs, c, m) ->
Acc (Fix (f, xs, c, App (m, extract_accu k)))
| _ -> raise (DcErr "Invalid decompilation of fixpt accum.")
end in
extract_accu k
| _ -> raise (DcErr "Unable to extract")
let am_reduce is =
debug 3 3 ("REDUCING: " ^ show_instrs is);
let rec eval st =
debug 4 4 (show_st st);
let {st_c=c; st_e=e; st_s=s; st_n=n} = st in
match c with
| [] -> raise (RdErr "Empty code section")
| (instr :: c) -> begin
match instr with
| ACCESS ((x, _), i) -> begin
try eval {st with st_c=c; st_s=(List.nth e i :: s)}
with Not_found -> raise (RdErr ("Var " ^ x ^ " not found"))
end
| CLOSURE c' -> eval {st with st_c=c; st_s=(Clos(c', e) :: s)}
| ACCLOSURE x -> eval {st with st_c=c; st_s=(Accu(NoVar x) :: s)}
| PUSHRETADDR c' -> eval {st with st_c=c; st_s=(Ret(c', e, n) :: s)}
| APPLY i -> begin
match s with
| (Clos (c', e') :: s) ->
eval {st_c=c'; st_e=e'; st_s=s; st_n=i}
| (Accu k :: s) -> begin
let (args, s') = split i s in
match s' with
| (Ret (c', e', n') :: s'') ->
eval {st_c=c'; st_e=e';
st_s=(Accu(NoApp(k,args)))::s''; st_n=n'}
| _ -> raise (RdErr "APPLY over accu with invalid stack")
end
| _ -> raise (RdErr "APPLY over non-closure mval")
end
| GRAB _ -> begin
if n == 0 then
match s with
| (Ret (c', e', n') :: s) ->
let clos = Clos (instr :: c, e) in
eval {st_c=c'; st_e=e'; st_s=clos::s; st_n=n'}
| [] -> Clos (instr :: c, e)
| _ -> raise (RdErr "GRAB (n=0) over non-retval")
else
match s with
| (v :: s) -> eval {st_c=c; st_e=v::e; st_s=s; st_n=n-1}
| _ -> raise (RdErr "GRAB (n>0) over empty stack")
end
| RETURN -> begin
if n == 0 then
match s with
| (v :: Ret (c', e', n') :: s) ->
eval {st_c=c'; st_e=e'; st_s=v::s; st_n=n'}
| [v] -> v
| _ -> raise (RdErr "RETURN over empty stack or non-retval")
else
match s with
| (Clos (c', e') :: s) ->
eval {st_c=c'; st_e=e'; st_s=s; st_n=n}
| _ -> raise (RdErr "RETURN over empty stack or non-retval")
end
| MAKEBLOCK (x, m) -> let (vs, s') = split m s in
eval {st_c=c; st_e=e;
st_s=(Cons (x, vs)::s'); st_n=n}
| SWITCH bs -> begin
match s with
| (Cons (x, vs) :: s) ->
let (_, c') = try List.find (fun ((y, _), _) -> y == x) bs
with Not_found ->
raise (RdErr "SWITCH constr id not found") in
let e' = List.rev vs @ e in
eval {st_c=c'; st_e=e'; st_s=s; st_n=0}
| (Accu k :: s) ->
let accu = Accu (NoCase (k, instr :: c, e)) in
eval {st_c=ret; st_e=e; st_s=accu::s; st_n=0}
| _ -> raise (RdErr "SWITCH over empty stack or non-constr")
end
| CLOSUREREC (_, c') -> let rec v = Clos (c', v::e) in
eval {st with st_c=c; st_s=v::s}
| GRABREC _ -> begin
match (s, n) with
| ([Accu k], 1) -> Accu (NoFix (k, c, e))
| (Accu k :: s, n) ->
let accu = Accu (NoFix (k, instr :: c, e)) in
eval {st_c=ret; st_e=e; st_s=accu::s; st_n=n-1}
| (Ret (c', e', n') :: s, n) ->
let clos = Clos (instr :: c, e) in
eval {st_c=c'; st_e=e'; st_s=clos::s; st_n=n'}
| (mval :: s, n) ->
eval {st_c=c; st_e=mval::e; st_s=s; st_n=n-1}
| ([], 0) -> Clos (instr :: c, e)
| _ -> raise (RdErr "GRABREC over empty stack or invalid mval")
end
end in
let st = {st_c = is; st_e = []; st_s = []; st_n = 0} in
eval st
let reduce m = debug 2 1 ("V( " ^ show m ^ " )");
match m with
| App (m1, m2) -> m |> compile |> am_reduce |> extract
| _ -> m
end
module StrongRed = struct
open CCLambda
let rec extract_unique = function
| Var x -> x
| Acc x -> extract_unique x
| _ -> raise (RdErr "Trying to extract invalid value")
let unique x = symbol (fst x)
let rec reduce m =
debug 2 0 ("N( " ^ show m ^ " )");
match m with
| Fix (f, xs, c, m) ->
let xs' = List.map unique xs in
let f' = unique f in
let c' = unique c in
let accs = List.map (fun x -> Acc (Var x)) (f' :: xs' @ [c']) in
let m' = reduce (apps (m :: accs)) in
Fix (f', xs', c', m')
| _ -> readback (WeakRed.reduce m)
and readback m =
debug 2 1 ("R( " ^ show m ^ " )");
match m with
| Abs (x, m) -> let u = unique x in
Abs (u, reduce (App (Abs (x, m), Acc (Var u))))
| Constr (x, vs) -> Constr (x, List.map readback vs)
| Acc k -> readback_acc k
| App (Fix (f, xs, c, m), p) ->
App (reduce (Fix (f, xs, c, m)), readback p)
| _ -> raise (RdErr "Readback of invalid value")
and readback_acc m =
debug 2 2 ("R'( " ^ show m ^ " )");
match m with
| Var x -> Var x
| App (k, v) -> App (readback_acc k, readback v)
| Acc (Var x) -> Var x
| Case (k, bs) -> let x = extract_unique k in
let b = Abs (x, Case (Var x, bs)) in
let rb_branch ((c, xs), m) =
let us = List.map unique xs in
let acc_us = List.map (fun x -> Acc (Var x)) us in
((c, us), reduce (App (b, Constr (c, acc_us)))) in
Case (readback_acc k, List.map rb_branch bs)
| _ -> raise (RdErr "Readback of invalid accumulator")
end
let weakred m =
print_endline "WEAK REDUCTION TEST";
print_endline ("Lambda term:\n " ^ CCLambda.show m);
let compiled = WeakRed.compile m in
let reduced = WeakRed.am_reduce compiled in
print_endline ("Reduced term:\n " ^ CCLambda.show (WeakRed.extract reduced));
print_endline "----------------------------------------------------------\n"
let strongred m =
print_endline "STRONG REDUCTION TEST";
print_endline ("Lambda term:\n " ^ CCLambda.show m);
print_endline ("Reduced term:\n " ^ CCLambda.show (StrongRed.reduce m));
print_endline "----------------------------------------------------------\n"
let () =
let open CCLambda in
let examples = [ex_m1; ex_id_id; ex_case_head; ex_fixpt_dup] in
List.iter weakred examples;
List.iter strongred examples
|